Лип
6
2017
Publication date:
7 September 2017
Source:Advances in Mathematics, Volume 317
Author(s): Gufang Zhao, Changlong Zhong
For any formal group law, there is a formal affine Hecke algebra defined by Hoffnung–Malagón-López–Savage–Zainoulline. Coming from this formal group law, there is also an oriented cohomology theory. We identify the formal affine Hecke algebra with a convolution algebra coming from the oriented cohomology theory applied to the Steinberg variety. As a consequence, this algebra acts on the corresponding cohomology of the Springer fibers. This generalizes the action of classical affine Hecke algebra on the K-theory of the Springer fibers constructed by Lusztig. We also give a residue interpretation of the formal affine Hecke algebra, which generalizes the residue construction of Ginzburg–Kapranov–Vasserot when the formal group law comes from a 1-dimensional algebraic group.